Broadband emission Gd 3 Sc 2 Al 3 O 12 :Ce 3+ transparent ceramics with a high color rendering index for high-power white LEDs/LDs

2021 
The discovery of single structure Ce3+ doped garnet transparent ceramics (TCs) with a broad full width at half maximum (FWHM) is essential to realize a high CRI for high-power white light emitting diodes (LEDs) and laser diodes (LDs). In this work, by utilizing the ion substitution engineering strategy, pure phase Gd3Sc2Al3O12:Ce3+ (GSAG:Ce) TC with a broad FWHM of 132.4 nm and a high CRI value of 80.7 was fabricated through the vacuum sintering technique for the first time. The optimized in-line transmittance of TCs was 58.4% @ 800 nm. Notably, the GSAG:Ce TCs exhibited a remarkable red shift from 546 nm to 582 nm, with a high internal quantum efficiency (IQE) of 46.91%. The degraded thermal stability in Ce:GSAG TCs was observed compared with that of Ce:YAG TC, owing to the narrowed band gap of GSAG. Additionally, remote excitation white LEDs/LDs were constructed by combining GSAG:Ce TCs with blue LED chips or laser sources. A tunable color hue from yellow to shinning white was achieved in white LEDs, whereas the acquired CRI and CCT of the white LDs were 69.5 and 7766 K, respectively. This work provides a new perspective to develop TCs with high CRI for their real applications in high-power white LEDs/LDs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    77
    References
    5
    Citations
    NaN
    KQI
    []