Band alignment and interfacial chemical structure of the HfLaO/InGaZnO4 heterojunction investigated by x-ray photoelectron spectroscopy

2017 
Amorphous InGaZnO4 thin film transistors (a-IGZO TFTs) with HfLaO gate dielectrics have been widely demonstrated to possess extremely excellent electrical characteristics, and thus show great potential for applications in various next-generation electronic products. Nevertheless, the in-depth understanding of HfLaO/IGZO interfacial features is still lacking, which makes further device optimization lack clear guidance. In this work, the band alignment and interfacial chemical structure of a sputtering-prepared HfLaO/IGZO heterojunction was investigated through x-ray photoelectron spectroscopy. The valence and conduction band offsets (ΔE v and ΔE c) at the interface were determined to be 0.57 eV and 1.48 eV, respectively. The relatively large ΔE v is mainly attributed to the formation of the interfacial layer (IL) and thus the upward band bending from IGZO to the surface of HfLaO. Furthermore, it was found that the oxygen vacancies on the surface of IGZO were significantly suppressed upon the deposition of HfLaO, which not only explained the previously reported ultrahigh performance of a-IGZO/HfLaO TFTs to some extent, but also additionally validated the formation of the IL. Our findings have successfully revealed the importance of ILs in modifying the band alignment and interfacial trap states of HfLaO/IGZO heterojunctions, thus suggesting a potential route to further optimizing a-IGZO/HfLaO TFTs so as to satisfy the requirements of next-generation technologies.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    2
    Citations
    NaN
    KQI
    []