Calculation of improved enthalpy and entropy of vaporization by a modified partition function in quantum cluster equilibrium theory

2021 
In this work, we present an altered partition function that leads to an improved calculation of the enthalpy and entropy of vaporization in the framework of quantum cluster equilibrium theory. The changes are based on a previously suggested modification [S. Grimme, Chem. Eur. J. 18, 9955–9964 (2012)] of the molecular entropy calculation in the gas phase. Here, the low energy vibrational frequencies in the vibrational partition function are treated as hindered rotations instead of vibrations. The new scheme is tested on a set of nine organic solvents for the calculation of the enthalpy and entropy of vaporization. The enthalpies and entropies of vaporization show improvements from 6.5 error to 3.3 kJ mol−1 deviation to experiment and from 28.4 error to 13.5 J mol−1 K−1 deviation to experiment, respectively. The effect of the corrected partition function is visible in the different populations of clusters, which become physically more meaningful in that larger clusters are higher populated in the liquid phase and the gas phase is mainly populated by the monomers. Furthermore, the corrected partition function also overcomes technical difficulties and leads to an increased stability of the calculations in regard to the size of the cluster set.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    48
    References
    0
    Citations
    NaN
    KQI
    []