Mapping of m6A and Its Regulatory Targets in Prostate Cancer Reveals a METTL3-low Induction of Therapy Resistance

2021 
Recent evidence has highlighted the role of N6-methyladenosine (m6A) in the regulation of mRNA expression, stability and translation, supporting a potential role for post-transcriptional regulation mediated by m6A in cancer. Here we explore prostate cancer as an exemplar and demonstrate that low levels of N6-adenosine-methyltransferase (METTL3) is associated with advanced metastatic disease. To explore this relationship, we generated the first prostate m6A maps, and further examined how METTL3 regulates expression at the level of transcription, translation, and protein. Significantly, transcripts encoding extracellular matrix proteins are consistently upregulated with METTL3 knockdown. We also examined the relationship between METTL3 and androgen signaling and discovered the upregulation of a hepatocyte nuclear factor-driven gene signature that is associated with therapy resistance in prostate cancer. Significantly, METTL3 knockdown rendered the cells resistant to androgen receptor antagonists, implicating changes in m6A as a mechanism for therapy resistance in metastatic prostate cancer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    70
    References
    0
    Citations
    NaN
    KQI
    []