Orientation-controlled nonradiative energy transfer to colloidal nanoplatelets: Engineering dipole orientation factor

2019 
We proposed and showed strongly orientation-controlled Forster resonance energy transfer (FRET) to highly anisotropic CdSe nanoplatelets (NPLs). For this purpose, we developed a liquid–air interface self-assembly technique specific to depositing a complete monolayer of NPLs only in a single desired orientation, either fully stacked (edge-up) or fully nonstacked (face-down), with near-unity surface coverage and across large areas over 20 cm2. These NPL monolayers were employed as acceptors in an energy transfer working model system to pair with CdZnS/ZnS core/shell quantum dots (QDs) as donors. We found the resulting energy transfer from the QDs to be significantly accelerated (by up to 50%) to the edge-up NPL monolayer compared to the face-down one. We revealed that this acceleration of FRET is accounted for by the enhancement of the dipole–dipole interaction factor between a QD-NPL pair (increased from 1/3 to 5/6) as well as the closer packing of NPLs with stacking. Also systematically studying the dista...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    25
    Citations
    NaN
    KQI
    []