Femtosecond Photonic Viral Inactivation Probed Using Solid-State Nanopores

2018 
We report on the detection of inactivation of virus particles using femtosecond laser radiation by measuring the conductance of a solid state nanopore designed for detecting single virus particles. Conventional methods of assaying for viral inactivation based on plaque forming assays require 24-48 hours for bacterial growth. Nanopore conductance measurements provide information on morphological changes at a single virion level. We show that analysis of a time series of nanopore conductance can quantify the detection of inactivation, requiring only a few minutes from collection to analysis. Morphological changes were verified by Dynamic Light Scattering (DLS). Statistical analysis maximizing the information entropy provides a measure of the Log-reduction value. Taken together, our work provides a rapid method for assaying viral inactivation with femtosecond lasers using solid-state nanopores.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    1
    References
    0
    Citations
    NaN
    KQI
    []