Adaptive monitoring approach to assess dissolved organic matter dynamics during rainfall events.

2021 
Rainfall events induce water quality transformation in river systems influenced by the watershed land use and hydrology dynamics. In this context, an adaptive monitoring approach (AMA) is used to assess non-point sources (NPS) of pollution events, through dissolved organic matter (DOM) contribution. The case study is a monitoring site in a semi-urban watershed characterized by NPS contribution. An integrated quali-quantitative method for DOM based on dissolved organic carbon (DOC) content, spectroscopic techniques of excitation-emission fluorescence (EEF), and UV–visible absorbance is proposed. The results indicate a mix of allochthonous and autochthonous DOM characteristics from NPS sources associated to vegetation area influence (A285/DOC of 15.43 L (g cm)−1 and SUVA254 of 2.11 L (mg m)−1). The EEF signals showed more humic-like than protein-like characteristics with peaks A and C (approximately 5.72 r.u.) more intense than peaks B, T1, and T2 (approximately 4.33 r.u.), indicating NPS from the soil leachate. The absorbance ratio values indicate a mix of organic compounds with greater proportion of refractory characteristics with high aromaticity and molecular weight (approximately A300/A400 of 4.15 and A250/A365 of 4.48), associated with the surface wash-off of accumulated residual and subsurface soil erosion, which contribute to complex organic matter structures. The fluorescence indexes, overall, indicated allochthonous sources with intermediate humic characteristics (FI ≈ 1.43, BIX ≈ 0.65, and HIX ≈ 7.98). The proposed integrated optical property strategy represents an opportunity for better understanding of DOM dynamic assessment for identifying potential mitigation techniques for organic pollution control and improving water quality conditions.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    0
    Citations
    NaN
    KQI
    []