Inflammation-induced iron transport and metabolism by brain microglia

2018 
Microglia are immune cells of the central nervous system and are implicated in brain inflammation. However, how brain microglia modulate transport and metabolism of the essential metal iron in response to pro- and anti-inflammatory environmental cues is unclear. Here, we characterized uptake of transferrin (Tf)-bound iron (TBI) and non-Tf-bound iron (NTBI) by immortalized microglial (IMG) cells. We found that these cells preferentially take up NTBI in response to the proinflammatory stimulus lipopolysaccharide (LPS) or β-amyloid (Aβ). In contrast, the anti-inflammatory cytokine interleukin 4 (IL-4) promoted TBI uptake. Concordant with these functional data, levels of the Tf receptor (TfR) in IMG cells were up-regulated in response to IL-4, whereas divalent metal transporter-1 (DMT1) and ferritin levels increased in response to LPS or Aβ. Similar changes in expression were confirmed in isolated primary adult mouse microglia treated with pro- or anti-inflammatory inducers. LPS-induced changes in IMG cell iron metabolism were accompanied by notable metabolic changes, including increased glycolysis and decreased oxidative respiration. Under these conditions, the extracellular acidification rate was increased, compatible with changes in the cellular microenvironment that would support the pH-dependent function of DMT1. Moreover, LPS increased heme oxygenase-1 (HO1) expression in IMG cells, and iron released because of HO1 activity increased the intracellular labile free-iron pool. Together, this evidence indicates that brain microglia preferentially acquire iron from Tf or from non-Tf sources, depending on their polarization state; that NTBI uptake is enhanced by the proinflammatory response; and that under these conditions microglia sequester both extra- and intracellular iron.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    33
    References
    59
    Citations
    NaN
    KQI
    []