An Active-to-Sterile Neutrino Transition Dipole Moment and the XENON1T Excess

2020 
In this short letter, we find that a magnetic transition dipole moment between tau and sterile neutrinos can account for the XENON1T excess events. Unlike the ordinary neutrino dipole moment, the introduction of the new sterile mass scale allows for astrophysical bounds to be suppressed. Interestingly, the best-fit regions that are compatible with the SN1987A imply either boron-8 or CNO neutrinos as the source flux. We find that sterile neutrinos of either $\sim$ 260 keV or in the $\sim$(500 - 800) keV mass range are capable of evading astrophysical constraints while being able to successfully explain the XENON1T event rate. The sterile neutrino in the best fit parameter space may have significant effects on big bang nucleosynthesis (BBN). We show the region in which a low reheating temperature of the Universe may allow the BBN constraints to be alleviated.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    11
    Citations
    NaN
    KQI
    []