The rna binding protein mip6, a novel cellular partner of mex67 export factor with implications in mrna export

2017 
Nuclear export of messenger ribonucleic acid (mRNA) is a complex and essential process for a correct gene expression in all eukaryotic cells. The export of mRNA through the nuclear pore complex depends mostly on the crosstalk and coordination of several proteins forming what is known as mRNPs (messenger ribonucleoproteins) that play dynamic, interconnecting roles in the different mRNA biogenesis steps such as pre-mRNA processing, stability, and export. One key protein in this process is Mex67, conserved from yeast to humans, is the major messenger RNA exporter also involved in ribosomal RNA export. Mex67 interacts with Mtr2 to form an evolutionary conserved heterodimer essential for proper mRNA export and subsequently the survival of the cell. Mex67 have been studied for many years, however due to the complexity and interconnectivity of the different processes in mRNA biogenesis, there is yet to uncover many details on the dynamics of the process and the crosstalk between Mex67 and its many partners. In this study, using a combination of biochemical, biophysical, and structural analysis, we characterize the interaction between Mex67 and a novel partner protein called Mip6 (Mex67 interacting protein 6). We were able to reconstitute a stable complex in vitro, and extensively study the mechanism in which the two proteins interact. We also solved the crystal structure of the C-terminal region of Mex67 that interacts with Mip6 and identified the UBA domain of Mex67, known to bind FG nucleoporins and Hpr1 protein as also the site where Mip6 binds. However, little was known about the structure or function of Mip6 and its paralogue Pes4. Here we proved that Mip6 is an RNA binding protein with four RNA recognition motifs that binds RNA in vitro with high affinity. Additionally, its fourth RNA recognition motif was also the site of binding of Mex67. Furthermore, we showed that the Mex67 complex formation with Mip6 RRM4 compromises its ability to bind RNA or vice versa. We also designed a point mutation on Mip6 RRM4 that disrupts its interaction with Mex67 but not with RNA. Subsequent in vivo yeast assays led us to hypothesize a role of Mip6 as an adaptor protein for Mex67 in nuclear export especially upon stress. Additional function of Mip6 was the localization of its bound mRNA to cytoplasmic stress granules in cellular stress conditions. Moreover, the crystal structures of Mip6 RRM3, Pes4 RRM3, Pes4 RRM4, and Pes4 RRM3/4 were also solved. All RRMs adopted a canonical RRM fold with conserved RNP1 and RNP2 sequences normally involved in RNA binding, except Mip6 RRM3 that was missing the aromatic ring in RNP2. In the structure of RNA-free Pes4 RRM3/4, the tandem RRM domains were connected with a flexible disordered linker and no inter-domain contact between them. Finally, although Pes4 RRM4 was binding RNA in vitro, it did not have the ability to interact with Mex67 thus suggesting a separate evolutionary function for Mip6 and Pes4.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []