Towards a high-performance Foucault pendulum for the measurement of relativistic gravity

2021 
The Foucault pendulum has become one of the fundamental experiments of physics since Leon Foucault's famous demonstration of a 67 metre pendulum with a 22 kg bob mass at the Pantheon in Paris in 1851. This paper attempts to show that Foucault's fundamental experiment could perhaps be developed into a highly sensitive measurement system capable of resolving the tiny precessional motions of relativistic frame-dragging. The authors have shown that their mathematical model of a Foucault pendulum performs extremely well in terms of predicting the Newtonian rotation of the Earth. The model takes account of latitude and incorporates parametric excitation of the length as a harmonic modulating motion of ≤ 0.01 of the nominal pendulum length. The main aim of the ongoing work discussed in this paper is to try to resolve the tiny motions of Lense-Thirring frame-dragging precession, for which we confirm that a first approximation prediction at a chosen terrestrial latitude can be obtained through an analogy between Maxwellian electrodynamics and gravitoelectromagnetism. A new experimental measurement will require an increase in resolution of at least 2 × 10' over that required for measuring the Newtonian rotation of the Earth.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []