Examining the efficacy of improved traffic signs and markings at flashing-light-controlled grade crossings based on driving simulation and eye tracking systems

2021 
Abstract The majority of the collisions at grade crossings occurred at flashing-light-controlled grade crossings. Understanding drivers’ behaviors and visual performances in the process of approaching the crossings is the foundation of improving crossing safety. This study aims at utilizing driving simulation and eye tracking systems to investigate the efficacy of improved traffic signs and pavement markings (PSM) at flashing-light-controlled grade crossings. The improved signs and markings were modeled in a driving simulation system and tested with a series of flashing light trigger time (FLTT) ranging from 2 s to 6 s with 1 s interval increment. Foggy conditions and drivers’ genders and vocations were considered in experiment design. Thirty-six fully-licensed drivers between 30 and 48 years participated in the experiment. Several eye-movement and behavioral measures were adopted as reflections of the subjects’ performances, including the first fixation time on signs and signals and distance to stop line, total fixation duration, compliance rate, stop position, average speed at the stop line, maximum deceleration rate and brake response time. Results showed that compared with traditional grade crossings signs and pavement markings, drivers could perceive signs timelier and fixate on the flashing-light signal earlier in PSM, especially in the scenarios of earlier FLTTs. The improvement in fixation performance and sign design contributed to a higher stop compliance rate. Importantly, it was found that drivers would hesitate to decide whether to stop or cross facing with flashing red lights, which is similar to the dilemma zone of roadway intersections. Drivers were more likely to fall into the dilemma zones when FLTT was
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    1
    Citations
    NaN
    KQI
    []