Degradation Mechanisms in Organic Light-Emitting Diodes with Polyethylenimine as a Solution-Processed Electron Injection Layer

2017 
In this work, we investigate the performance and operational stability of solution-processed organic light-emitting diodes (OLEDs), which comprise polyethylenimine (PEI) as an electron injection layer (EIL). We show that the primary degradation mechanism in these OLEDs depends on the cathode metal that is used in contact with the EIL. In the case of Al, the deterioration in OLED performance during electrical driving is mainly caused by excitons which reach and subsequently degrade the emitter/PEI interface. In contrast, in the case of Ag, device performance degradation occurs due to an additional mechanism: hole accumulation at the emitter/PEI interface and a consequent drop in the emitter quantum yield. As a result, the operational lifetime of OLEDs that use PEI as EIL can vary significantly with the cathode material, and at a current density of 20 mA cm–2, LT50 lifetimes of ∼200 h and <10 h are obtained for Al and Ag, respectively. Finally, we show that the first degradation mechanism can be significant...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    43
    References
    31
    Citations
    NaN
    KQI
    []