Histaminergic Modulation of Nonspecific Plasticity of the Auditory System and Differential Gating

2013 
In the auditory system of the big brown bat (Eptesicus fuscus), paired conditioned tonal (CS) and unconditioned leg stimuli (US) for auditory fear conditioning elicit tone-specific plasticity represented by best-frequency (BF) shifts that are augmented by acetylcholine, whereas unpaired CS and US for pseudoconditioning elicit a small BF shift and prominent nonspecific plasticity at the same time. The latter represents the nonspecific augmentations of auditory responses accompanied by the broadening of frequency tuning and decrease in threshold. It is unknown which neuromodulators are important in evoking the nonspecific plasticity. We found that histamine (HA) and an HA3 receptor (HA3R) agonist (α-methyl-HA) decreased, but an HA3R antagonist (thioperamide) increased, cortical auditory responses; that the HA3R agonist applied to the primary auditory cortex before pseudoconditioning abolished the nonspecific augmentation in the cortex without affecting the small cortical BF shift; and that antagonists of acetylcholine, norepinephrine, dopamine, and serotonin receptors did not abolish the nonspecific augmentation elicited by pseudoconditioning. The histaminergic system plays an important role in eliciting the arousal and defensive behavior, possibly through nonspecific augmentation. Thus HA modulates the nonspecific augmentation, whereas acetylcholine amplifies the BF shifts. These two neuromodulators may mediate differential gating of cortical plasticity.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    59
    References
    2
    Citations
    NaN
    KQI
    []