Variational Hamiltonian Ansatz for 1D Hubbard chains in a broad range of parameter values

2021 
Hybrid quantum-classical algorithms have been proposed to circumvent noise limitations in quantum computers. Such algorithms delegate only a calculation of the expectation value to the quantum computer. Among them, the Variational Quantum Eigensolver (VQE) has been implemented to study molecules and condensed matter systems on small size quantum computers. Condensed matter systems described by the Hubbard model exhibit a rich phase diagram alongside exotic states of matter. In this manuscript, we try to answer the question: how much of the underlying physics of a 1D Hubbard chain is described by a problem-inspired Variational Hamiltonian Ansatz (VHA) in a broad range of parameter values ? We start by probing how much does the solution increases fidelity with increasing ansatz complexity. Our findings suggest that even low fidelity solutions capture energy and number of doubly occupied sites well, while spin-spin correlations are not well captured even when the solution is of high fidelity. Our powerful simulation platform allows us to incorporate a realistic noise model and show a successful implementation of a noise-mitigation strategy - the Richardson extrapolation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []