Study of trivalent samarium ion embedded lithium‐based borate glass for high‐density optical memory devices

2020 
Sm(3+) ions doped strontium lithium lead borate glasses (SLLB:Sm) were prepared using a conventional melt-quenching technique. The glasses were analyzed using X-ray diffractometry and Fourier transform infrared spectroscopy, optical absorption, fluorescence spectral analysis, and fluorescence lifetime decay. The Judd-Ofelt (J-O) parameters and radiative parameters of the SLLB:Sm10 glass (1.0 mol% Sm(3+) ion-doped glass) were calculated using J-O theory. From the emission spectra, among all the synthesized glass, SLLB:Sm10 glass had the highest emission intensity for (4) G5/2 -->(6) H11/2 transition (610 nm). Emission parameters, such as stimulated emission cross-section and optical gain bandwidth, were calculated. For all concentrations of Sm(3+) ions, the decay profile showed an exponential nature and decreased when the Sm(3+) ion concentration was increased due to a concentration quenching effect. This result suggests that the synthesized SLLB:Sm10 glass could be used for application in high-density optical memory devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    10
    Citations
    NaN
    KQI
    []