Therapeutic effect of disulfiram inclusion complex embedded in hydroxypropyl-β-cyclodextrin on intracranial glioblastoma-bearing male rats via intranasal route

2020 
Abstract The unique environment of brain poses a huge challenge for drug development aimed at combatting glioblastoma (GBM) due to poor organ targeting. Intranasal administration is often considered as an attractive route directly into brain by not only circumventing the blood brain barrier and but also avoiding the hepatic first-pass effect. Disulfiram (DSF) is an old alcohol-aversion drug that has anti-tumor activities against diverse cancer types such as GBM in preclinical studies, especially when it is combined with cupper ion (Cu). In this study, DSF was embedded in hydroxypropyl-β-cyclodextrin (HP-β-CD) to prepare a DSF inclusion complex with the enhanced solubility, anti-GBM activity and high safety in vitro. The highest fluorescence signal of Cy5.5/HP-β-CD in the male rat brains showed the strong brain-targeting of nose-to-brain drug delivery. Therapeutic effects of DSF/HP-β-CD combined with Cu (DSF/HP-β-CD/Cu) on intracranial GBM-bearing male rats via different drug delivery routes were then investigated. DSF/HP-β-CD/Cu administrated by the intranasal route effectively inhibited tumor growth and migration, promoted apoptosis, and achieved 36.8% and 18.2% prolonged median survival time comparing to those of model rats by oral and intravenous administrations, respectively. Moreover, no obvious histopathological damage to normal tissues was observed by H&E staining. Overall, DSF/HP-β-CD/Cu could be a promising intranasal formulation for the effective GBM treatment.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    2
    Citations
    NaN
    KQI
    []