Replay-Attack Detection Using Features With Adaptive Spectro-Temporal Resolution

Variable-resolution processing aims to improve the feature representation ability by enlarging the local discriminative details. In previous anti-spoofing studies, different phones and frequency regions were both proven to have various levels of sensitivity to replay distortion. In this paper, an adaptive spectro-temporal resolution is proposed to obtain the optimal scale in the feature space: the frequency resolution is adaptive to frequency discrimination, while the temporal resolution is adaptive to continuous phones. In the process, phone-frequency F-ratio analysis is applied to investigate the sensitivity divergences to replay distortion among phones and frequencies. Then, attentive filters are designed to automatically adapt to the phone-frequency discrimination. Validation experiments for the proposed method are conducted on two well-acknowledged magnitude and phase features. A comparative analysis on the ASVspoof 2017 V2.0 database demonstrates that our proposed adaptive spectro-temporal resolution method attains considerably higher error reduction rates than the approaches involving the corresponding original resolution features.
    • Correction
    • Source
    • Cite
    • Save