Diphenyl diselenide improves the antioxidant response via activation of the Nrf-2 pathway in macrophage cells.

2014 
Abstract Diphenyl diselenide [(PhSe) 2 ] is an organoselenium compound that can mimic endogenous antioxidant enzymes, such as glutathione peroxidase (GPx), or be metabolized by thioredoxin reductase to form selenol intermediate, which can copy the function of the antioxidant selenoenzymes. This compound has shown potential role in preventing atherosclerosis and other oxidative stress-related diseases. The understanding of the underlying mechanism by which (PhSe) 2 modulates the glutathione-related antioxidant defenses is a relevant question. Therefore, we tested its ability to promote the nuclear translocation of the nuclear factor (erythroid 2-like)-related factor 2 (Nrf-2), increasing the expression of enzymes related to the antioxidant system, such as heme oxygenase 1 (HO-1) and peroxiredoxin 1 (Prx-1), in addition to the main enzyme in the glutathione synthesis - gamma glutamylcysteine synthetase (?-GCS) - in murine J774 macrophage cells. (PhSe) 2 (1 µM) was able to promote nuclear translocation and increased the expression of the Nrf-2 factor in the nucleus in a time-dependent manner (1-24 hours). In addition, this compound significantly increased the expression of HO-1 and Prx-1 at 24 hours and GPx-1 after the first hour. Furthermore, (PhSe) 2 was able to enhance GSH levels in a time-dependent manner, as well as GPx and GGCS activities. The increase in GPx and GGCS activities was dependent on the activation of PI3K, JNK, and p38MAPKs signaling pathways that may activate the Nrf2 factor. Altogether, these results show that (PhSe) 2 improved the antioxidant defense by increasing the expression of HO-1 and Prx-1 and the synthesis of GSH as a consequence of the activation and nuclear translocation of Nrf-2 factor.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    9
    Citations
    NaN
    KQI
    []