Non-invasive saliva human biomonitoring: development of an in vitro platform

2017 
Direct measurements of exposure represent the most accurate assessment of a subject's true exposure. The clearance of many drugs and chemicals, including pesticides such as chlorpyrifos (CPF), can be detected non-invasively in saliva. Here we have developed a serous-acinar transwell model system as an in vitro screening platform to prioritize chemicals for non-invasive biomonitoring through salivary clearance mechanisms. Rat primary serous-acinar cells express both α-amylase and aquaporin-5 proteins and develop significant tight junctions at postconfluence - a feature necessary for chemical transport studies in vitro. CPF exhibited bidirectional passage across the serous-acinar barrier that was disproportional to the passage of a cell impermeable chemical (lucifer yellow), consistent with a hypothesized passive diffusion process. CPF was metabolized to trichlorpyridinol (TCPy) by serous-acinar cells, and TCPy also displayed bidirectional diffusion in the transwell assay. This model system should prove useful as an in vitro screening platform to support the non-invasive monitoring of toxicons and pharmacons in human saliva and provide guidance for development of advanced in vitro screening platforms utilizing primary human salivary gland epithelial cells.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    41
    References
    6
    Citations
    NaN
    KQI
    []