CoSinGAN: Learning COVID-19 Infection Segmentation from a Single Radiological Image

2020 
Computed tomography (CT) images are currently being adopted as the visual evidence for COVID-19 diagnosis in clinical practice. Automated detection of COVID-19 infection from CT images based on deep models is important for faster examination. Unfortunately, collecting large-scale training data systematically in the early stage is difficult. To address this problem, we explore the feasibility of learning deep models for lung and COVID-19 infection segmentation from a single radiological image by resorting to synthesizing diverse radiological images. Specifically, we propose a novel conditional generative model, called CoSinGAN, which can be learned from a single radiological image with a given condition, i.e., the annotation mask of the lungs and infected regions. Our CoSinGAN is able to capture the conditional distribution of the single radiological image, and further synthesize high-resolution (512 × 512) and diverse radiological images that match the input conditions precisely. We evaluate the efficacy of CoSinGAN in learning lung and infection segmentation from very few radiological images by performing 5-fold cross validation on COVID-19-CT-Seg dataset (20 CT cases) and an independent testing on the MosMed dataset (50 CT cases). Both 2D U-Net and 3D U-Net, learned from four CT slices by using our CoSinGAN, have achieved notable infection segmentation performance, surpassing the COVID-19-CT-Seg-Benchmark, i.e., the counterparts trained on an average of 704 CT slices, by a large margin. Such results strongly confirm that our method has the potential to learn COVID-19 infection segmentation from few radiological images in the early stage of COVID-19 pandemic.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    44
    References
    5
    Citations
    NaN
    KQI
    []