Hybrid maize breeding with doubled haploids. IV. Number versus size of crosses and importance of parental selection in two-stage selection for testcross performance

2008 
Parental selection influences the gain from selection and the optimum allocation of test resources in breeding programs. We compared two hybrid maize (Zea mays L.) breeding schemes with evaluation of testcross progenies: (a) doubled haploid (DH) lines in both stages (DHTC) and (b) S1 families in the first stage and DH lines within S1 families in the second stage (S1TC-DHTC). Our objectives were to (1) determine the optimum allocation regarding the number of crosses, S1 families, DH lines, and test locations, (2) investigate the impact of parental selection on the optimum allocation and selection gain (ΔG), and (3) compare the maximum ΔG achievable with each breeding scheme. Selection gain was calculated by numerical integration. Different assumptions were made regarding the budget, variance components, correlation between the mean phenotypic performance of the parents and the mean genotypic value of the testcross performance of their progenies (ρ P ), and the composition of the finally selected test candidates. In comparison with randomly chosen crosses, maximum ΔG was largely increased with parental selection in both breeding schemes. With an increasing correlation ρ P , this superiority increased strongly, while the optimum number of crosses decreased in favor of an increased number of test candidates within crosses. Thus, concentration on few crosses among the best parental lines might be a promising approach for short-term success in advanced cycle breeding. Breeding scheme S1TC-DHTC led to a larger ΔG but had a longer cycle length than DHTC. However, with further improvements in the DH technique and the realization of more than two generations per year, early testing of S1 families prior to production of DH lines would become very attractive in hybrid maize breeding.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    24
    References
    24
    Citations
    NaN
    KQI
    []