Translocation and biotoxicity of metal (oxide) nanoparticles in the wetland-plant system

2021 
Engineered nanoparticles (ENPs) threaten the environment through wastewater discharging. Generally, constructed wetlands (CWs) are efficient methods for ENPs removal. However, the biotoxicity of ENPs on plants in CWs is unclear. Here, we investigated the distribution and bio-impacts of different ENPs (Ag NPs, TiO2 NPs, and CeO2 NPs) in plants under 5- and 60-day exposure to 1 and 50 mg/L concentrations. Results showed that ENPs appeared in the vascular bundle and mesophyll cell space, which induced the variation in antioxidase activities (e.g., superoxide dismutase [SOD], peroxidase [POD], and catalase [CAT] activities) as well as overproduction of malondialdehyde (MDA). Additionally, Ag NPs inhibited photosynthesis rate and root activity during two exposure phases. CeO2 NPs had positive and negative impacts on plants in 5- and 60-day exposure, respectively. Inversely, TiO2 NPs enhanced photosynthesis and root activity under 60-day exposure. Finally, the contents of the C, N, and P elements in plants fluctuated in response to ENPs stress. All results have a positive correlation with the wetland performance under ENPs exposure except for TiO2 NPs treatment. Overall, our study systematically reveals aquatic plants’ responses to ENPs and provides a reference for building ecological treatment systems to purify wastewater containing ENPs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    57
    References
    1
    Citations
    NaN
    KQI
    []