Predicting the induction hardened case in 42CrMo4 cylinders

2020 
Abstract Induction hardening has the potential to produce favorable surface integrity that can improve fatigue performance and extend the lifetime of a component. The localized superficial heating provided by induction is the main advantage of this process, as it allows the core to remain intact and, therefore, ductile, while the surface is hardened. Achieving favorable characteristics in the hardened case is of great importance, as this process is usually applied to load bearing and wear-susceptible metallic components. The simulation of the hardening process by induction heating is a complex and challenging task at which many efforts have been directed in the last years. Due to the numerous interactions of the many physics that take part in the process (electromagnetic, thermal, microstructural and mechanical), a highly coupled finite element model is required for its numerical simulation. In this work, a semi-analytical induction heating model is used to compute the induction hardening process, predicting the size and shape of the hardened layer and the distribution of the hardness. Using the semi-analytical model allows the computational time to be much faster compared to a fully coupled model using a commercial software, where the time consumption for the presented 2D case is reduced by 20 %. Experimental validation is presented for cylindrical 42CrMo4 billets heated by a short solenoidal inductor, which shows good agreement with the predicted results, reaching an average error of 3.2 % in temperature estimations.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    5
    References
    5
    Citations
    NaN
    KQI
    []