A 3-dimensional finite element and in vitro analysis of endocrown restorations fabricated with different preparation designs and various restorative materials.

2021 
Abstract Statement of problem The preparation design and fabrication materials directly affect the clinical success of endocrown restorations, and yet, knowledge is lacking about the biomechanical impact of specific designs or materials on endocrown restorations. Purpose The purpose of this in vitro and finite element analysis study was to evaluate the biomechanical behavior of endocrown restorations. Material and methods A total of 36 freshly extracted mandibular first molars were collected. The teeth were prepared as per 2 different preparation geometries: with the buccal wall intact (Class 2) and without the buccal wall (Class 3). Teeth were restored with endocrowns made from 3 different fabricating materials, Vita Enamic, GC Cerasmart, and Lava Ultimate. To analyze the in vitro fracture strength, cemented endocrowns were loaded in a universal test machine with a 200-N oblique force until the restoration fractured. Finite element analysis was used to evaluate the stress distribution on both the dentin tissue and the restorative materials. The data were analyzed with a 2-way ANOVA test and the Tukey post hoc test (α=.05). Results No significant differences were found between the different preparation designs (Class 2 and Class 3) on fracture strength (P>.05). The highest mean ±standard deviation fracture strength values were found in the Lava Ultimate material (Class 2, 606.20 ±293; Class 3, 659.40 ±226 N) (P>.05), but the lowest fracture strength test values were obtained in the Vita Enamic material (Class 2, 439.60 ±136; Class 3, 340 ±98 N) (P>.05) for both preparation design test groups. Conclusions A statistically significant difference was not found between the 2 tooth preparation classifications. However, significant differences were observed among the test groups in the Class 2 preparation specimens. The Class 2 preparation design exhibited a higher number of irreparable failures.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    31
    References
    0
    Citations
    NaN
    KQI
    []