ELSA: efficient long-term secure storage of large datasets (full version) ∗

2020 
An increasing amount of information today is generated, exchanged, and stored digitally. This also includes long-lived and highly sensitive information (e.g., electronic health records, governmental documents) whose integrity and confidentiality must be protected over decades or even centuries. While there is a vast amount of cryptography-based data protection schemes, only few are designed for long-term protection. Recently, Braun et al. (AsiaCCS’17) proposed the first long-term protection scheme that provides renewable integrity protection and information-theoretic confidentiality protection. However, computation and storage costs of their scheme increase significantly with the number of stored data items. As a result, their scheme appears suitable only for protecting databases with a small number of relatively large data items, but unsuitable for databases that hold a large number of relatively small data items (e.g., medical record databases).In this work, we present a solution for efficient long-term integrity and confidentiality protection of large datasets consisting of relatively small data items. First, we construct a renewable vector commitment scheme that is information-theoretically hiding under selective decommitment. We then combine this scheme with renewable timestamps and information-theoretically secure secret sharing. The resulting solution requires only a single timestamp for protecting a dataset while the state of the art requires a number of timestamps linear in the number of data items. Furthermore, we extend the scheme, that supports a single client, to a multi-client setting. Subsequently, we characterize the arising challenges with respect to integrity and confidentiality and discuss how our multi-client scheme tackles them. We implemented our solution and measured its performance in a scenario where 9600 data items are aggregated, stored, protected, and verified over a time span of 80 years. Our measurements show that our new solution completes this evaluation scenario an order of magnitude faster than the state of the art.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    27
    References
    1
    Citations
    NaN
    KQI
    []