Classical Pauli repulsion: An anisotropic, atomic multipole model

2019 
Pauli repulsion is a key component of any theory of intermolecular interactions. Although Pauli or exchange repulsion has its origin in the quantum mechanical nature of electrons, it is possible to describe the resulting energetic effects via a classical model in terms of the overlap of electron densities. In fact, closed shell intermolecular repulsion can be explained as a diminution of election density in the internuclear region resulting in decreased screening of nuclear charges and increased nuclear-nuclear repulsion. We provide a concise anisotropic repulsion formulation using the atomic multipoles from the Atomic Multipole Optimized Energetics for Biomolecular Applications force field to describe the electron density at each atom in a larger system. Mathematically, the proposed model consists of damped pairwise exponential multipolar repulsion interactions truncated at short range, which are suitable for use in compute-intensive biomolecular force fields and molecular dynamics simulations. Parameter...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    75
    References
    27
    Citations
    NaN
    KQI
    []