Real-Time Robotic Control System for Titanium Gas Metal Arc Welding

2005 
Abstract : Titanium addresses the Army's need for high strength-to-weight characteristics and can meet the performance and transportability requirements of future lightweight systems. There are initiatives to develop low-cost titanium materials supplies; however, low-cost and high-rate fabrication processes are sorely lacking. Welding and joining technologies enable improved manufactured components by reducing the weight, production time, and cost of joining parts. Improved welding technology increases product lifetimes and makes possible the fabrication of large structures. Gas Metal Arc Welding (GMAW) has the potential to significantly improve the quality, speed, and penetration depth of titanium welds, while reducing the cost per part. However, this result can only be achieved if proper weld parameters are selected and dynamically maintained during the welding process due to the nature of titanium. During this Phase I SBIR project, we have successfully demonstrated the feasibility of our innovation by determining the requirements for the system for both Army and commercial applications; designing, fabricating, and testing one of the key sensors used in the adaptive control system; determining the hardware necessary to adequately measure the weld temperature for control use; and designing a prototype control system for Ti GMAW to be fabricated and tested during the Phase II project.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []