Quantum anomalous Hall effect in atomic crystal layers from in-plane magnetization

2016 
We theoretically report that, with \textit{in-plane} magnetization, the quantum anomalous Hall effect (QAHE) can be realized in two-dimensional atomic crystal layers with preserved inversion symmetry but broken out-of-plane mirror reflection symmetry. We take the honeycomb lattice as an example, where we find that the low-buckled structure, which makes the system satisfy the symmetric criteria, is crucial to induce QAHE. The topologically nontrivial bulk gap carrying a Chern number of $\mathcal{C}=\pm1$ opens in the vicinity of the saddle points $M$, where the band dispersion exhibits strong anisotropy. We further show that the QAHE with electrically tunable Chern number can be achieved in Bernal-stacked multilayer systems, and the applied interlayer potential differences can dramatically decrease the critical magnetization to make the QAHE experimentally feasible.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    34
    Citations
    NaN
    KQI
    []