A mixed finite element/boundary element approach to simulate complex guided elastic wave periodic transducers

2009 
The development of new surface acoustic wave devices exhibiting complicated electrode patterns or layered excitation transducers has been favored by an intense innovative activity in this area. For instance, devices exhibiting interdigital transducers covered by piezoelectric or dielectric layers have been fabricated and tested, but the design of such structures requires simulation tools capable to accurately take into account the actual shape of the wave guide elements. A modeling approach able to address complicated surface acoustic wave periodic structures (defined in the saggital plane) exhibiting any geometry then has been developed and implemented. It is based on the combination of a finite element analysis and a boundary element method. A first validation of the computation is reported by comparison with standard surface wave devices. Surface transverse wave resonators covered by amorphous silica have been built and consequently used for theory/experiment assessment. Also the case of recessed elect...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    18
    References
    32
    Citations
    NaN
    KQI
    []