Quantum simulation of antiferromagnetic Heisenberg chain with gate-defined quantum dots

2021 
Quantum-mechanical correlations of interacting fermions result in the emergence of exotic phases. Magnetic phases naturally arise in the Mott-insulator regime of the Fermi-Hubbard model, where charges are localized and the spin degree of freedom remains. In this regime the occurrence of phenomena such as resonating valence bonds, frustrated magnetism, and spin liquids are predicted. Quantum systems with engineered Hamiltonians can be used as simulators of such spin physics to provide insights beyond the capabilities of analytical methods and classical computers. To be useful, methods for the preparation of intricate many-body spin states and access to relevant observables are required. Here we show the quantum simulation of magnetism in the Mott-insulator regime with a linear quantum dot array. We characterize a Heisenberg chain of four spins, dial in homogeneous exchange couplings, and probe the low-energy antiferromagnetic eigenstate with singlet-triplet correlation measurements. The methods and control presented here open new opportunities for the simulation of quantum magnetism benefiting from the flexibility in tuning and layout of gate-defined quantum dot arrays.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    2
    Citations
    NaN
    KQI
    []