Boosting the performance of solution-processed quantum dots light-emitting diodes by a hybrid emissive layer via doping small molecule hole transport materials into quantum dots

2021 
Abstract Solution-processed colloidal quantum dot light-emitting diodes (QLED) have attracted many attentions with significant progress in recent years. However, QLED devices still face some challenges. The energy barrier between Cd-base quantum dots (QDs) and commonly used hole transport materials is larger than that between QDs and electron transport materials, which leads to the imbalance of carriers in the light emitting layer (EML) and the low performance of QLED devices. Herein, we report a simple strategy to improve the device performance by doping small molecule transport material 4,4′-cyclohexylidenebis[N,N-bis(p-tolyl)aniline] (TAPC) into red CdSe/ZnS QDs. The optimized red QLED devices with TAPC-doped emissive layer at a ratio of 3.2 wt% achieve 20.0 cd/A of maximum current efficiency, 16.6 lm/W of power efficiency and 15.7% of external quantum efficiency, which is 30%, 58% and 33% higher than the control device. The improved performance of devices can be ascribed to the increase of hole current density, decrease of leakage electrons and more balanced quantity of carriers in EML. This work put forward a viewpoint to improve the performance of QLED devices via doping high hole mobility materials into emission layer.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    51
    References
    0
    Citations
    NaN
    KQI
    []