Calpain 1 induce lysosomal permeabilization by cleavage of lysosomal associated membrane protein 2

2013 
Abstract In light induced retinal degeneration (LIRD) photoreceptor cell death is mediated by caspase independent mechanisms. The activation of LEI/L-DNase II pathway in this model, is due to cathepsin D release from lysosomes, although the underlying mechanism remains poorly understood. In this paper we studied the involvement of calpains in lysosomal permeabilization. We investigated, for the first time, the calpain targets at lysosomal membrane level. We found that calpain 1 is responsible for lysosomal permeabilization by cleavage of the lysosomal associated membrane protein 2 (LAMP 2). Moreover, LAMP 2 degradation and lysosomal permeabilization were rescued by calpain inhibition and the use of MEF −/− lamp 2 cells indicates that the cleavage of LAMP 2A is essential for this permeabilization. Finally, we found that LAMP 2 is cleaved in LIRD, suggesting that the mechanism of calpain induced lysosomal permeabilization is not exclusive of a single cell death model. Overall, these data shed new light on understanding the mechanisms of lysosomal and caspase-independent cell death and point to the original targets for development of the new therapeutic protocols.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    30
    References
    56
    Citations
    NaN
    KQI
    []