The water-water cycle is more effective in regulating redox state of photosystem I under fluctuating light than cyclic electron transport.

2020 
Abstract Photosynthetic electron flux from water via photosystem II (PSII) and PSI to oxygen (water-water cycle) may act as an alternative electron sink under fluctuating light in angiosperms. We measured the P700 redox kinetics and electrochromic shift signal under fluctuating light in 11 Camellia species and tobacco leaves. Upon dark-to-light transition, these Camellia species showed rapid re-oxidation of P700. However, this rapid re-oxidation of P700 was not observed when measured under anaerobic conditions, as was in experiment with tobacco performed under aerobic conditions. Therefore, photo-reduction of O2 mediated by water-water cycle was functional in these Camellia species but not in tobacco. Within the first 10 s after transition from low to high light, PSI was highly oxidized in these Camellia species but was over-reduced in tobacco leaves. Furthermore, such rapid oxidation of PSI in these Camellia species was independent of the formation of trans-thylakoid proton gradient (ΔpH). These results indicated that in addition to ΔpH-dependent photosynthetic control, the water-water cycle can protect PSI against photoinhibition under fluctuating light in these Camellia species. We here propose that the water-water cycle is an overlooked strategy for photosynthetic regulation under fluctuating light in angiosperms.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    62
    References
    17
    Citations
    NaN
    KQI
    []