Self-assembly and hydrothermal technique syntheized Fe2O3-RGO nanocomposite: The enhancement effect of electrochemical simultaneous detection of honokiol and magnolol

2018 
The nanocomposite of Fe2O3-reduced graphene oxide (Fe2O3-RGO) was synthesized by a hydrothermal reduction using self-assembly of Fe(OH)3 colloidal suspension and graphene oxide (GO) as precursors at 180°C. The resulting composites were characterized using XRD, SEM, FTIR, and TGA, and then were used to modify the glassy carbon electrode (GCE). After optimizing the parameters, the electrochemical behavior of honokiol and magnolol on different types of electrode was compared, which indicated that the Fe2O3-RGO composite-modified GCE enhanced electrochemical catalysis effect on the simultaneous determination of honokiol and magnolol. In pH 6.4 PBS solution, two well-shaped oxidation peaks at 0.51 and 0.64 V were observed at the Fe2O3-RGO composite-modified GCE and two well-shaped oxidation peaks were separated absolutely, which eliminated the disturbance between them. A sensitive and simple electrochemical method was proposed for the simultaneous determination of honokiol and magnolol. As to honokiol, the calibration curve is from 1.5 × 10−8 ~ 3.3 × 10−5 M, and the detection limit is 9.64 × 10−9 M. For magnolol, the linear range is from 7.5 × 10−8 ~ 2.6 × 10−5 M, and the detection limit is 1.05 × 10−8 M.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    38
    References
    5
    Citations
    NaN
    KQI
    []