$L^p$ Boundedness of Hilbert Transforms Associated with Variable Plane Curves

2018 
Let $p\in (1,\infty)$. In this paper, for any given measurable function $u:\ \mathbb{R}\rightarrow \mathbb{R}$ and a generalized plane curve $\gamma$ satisfying some conditions, the $L^p(\mathbb{R}^2)$ boundedness of the Hilbert transform along the variable plane curve $u(x_1)\gamma$ $$H_{u,\gamma}f(x_1,x_2):=\mathrm{p.\,v.}\int_{-\infty}^{\infty}f(x_1-t,x_2-u(x_1)\gamma(t)) \,\frac{\textrm{d}t}{t}, \quad \forall\, (x_1,x_2)\in\mathbb{R}^2, $$ is obtained. At the same time, the $L^p(\mathbb{R})$ boundedness of the corresponding Carleson operator along the general curve $\gamma$ $$\mathcal{C}_{u,\gamma}f(x):=\mathrm{p.\,v.}\int_{-\infty}^{\infty}e^{iu(x)\gamma (t)}f(x-t)\,\frac{\textrm{d}t}{t}, \quad\forall\, x\in\mathbb{R}, $$ is also obtained. Moreover, all the bounds are independent of the measurable function $u$.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    17
    References
    0
    Citations
    NaN
    KQI
    []