Directed gas-phase preparation of the elusive phosphinosilylidyne (SiPH2, X2A'') and cis/trans phosphinidenesilyl (HSiPH; X2A') radicals under single-collision conditions.

2021 
The reaction of the D1-silylidyne radical (SiD; X2Π) with phosphine (PH3; X1A1) was conducted in a crossed molecular beams machine under single collision conditions. Merging of the experimental results with ab initio electronic structure and statistical Rice–Ramsperger–Kassel–Marcus (RRKM) calculations indicates that the reaction is initiated by the barrierless formation of a van der Waals complex (i0) as well as intermediate (i1) formed via the barrierless addition of the SiD radical with its silicon atom to the non-bonding electron pair of phosphorus of the phosphine. Hydrogen shifts from the phosphorous atom to the adjacent silicon atom yield intermediates i2a, i2b, i3; unimolecular decomposition of these intermediates leads eventually to the formation of trans/cis-phosphinidenesilyl (HSiPH, p2/p4) and phosphinosilylidyne (SiPH2, p3) via hydrogen deuteride (HD) loss (experiment: 80 ± 11%, RRKM: 68.7%) and D-trans/cis-phosphinidenesilyl (DSiPH, p2′/p4′) plus molecular hydrogen (H2) (experiment: 20 ± 7%, RRKM: 31.3%) through indirect scattering dynamics via tight exit transition states. Overall, the study reveals branching ratios of p2/p4/p2′/p4′ (trans/cis HSiPH/DSiPH) to p3 (SiPH2) of close to 4 : 1. The present study sheds light on the complex reaction dynamics of the silicon and phosphorous systems involving multiple atomic hydrogen migrations and tight exit transition states, thus opening up a versatile path to access the previously elusive phosphinidenesilyl and phosphinosilylidyne doublet radicals, which represent potential targets of future astronomical searches toward cold molecular clouds (TMC-1), star forming regions (Sgr(B2)), and circumstellar envelopes of carbon rich stars (IRC + 10216).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    60
    References
    0
    Citations
    NaN
    KQI
    []