Phase separation of two-component Bose–Einstein condensates with monopolar interaction

2017 
This paper analyzes the properties of the two-component Bose–Einstein condensates (BECs) with long-range monopolar interaction by means of Thomas–Fermi approximation (TFA). The effects of long-range monopolar interaction, inter-component short-range s-wave scattering, and particle numbers on the density profiles and phase separation of BECs are investigated. It is shown that atoms with the small intra-component s-wave scattering length are squeezed out when the monopolar interaction of these atoms is not large enough, and the density profile will be compressed when corresponding monopolar interaction is increased. Effective zero interaction point that the s-wave scattering repulsive interaction is neutralized by monopolar attractive interaction, is found. Varying of particle numbers will cause the transformation between phase separation and faint phase separation (or mixture).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    16
    References
    2
    Citations
    NaN
    KQI
    []