language-icon Old Web
English
Sign In

Overview of TDRSS

1995 
Abstract The National Aeronautics and Space Administration (NASA) has developed the Tracking and Data Relay Satellite (TDRS) System (TDRSS) for operational tracking and communications support of low Earth-orbiting satellites. TDRSS currently consists of five geosynchronous spacecraft and the White Sands Complex (WSC) at White Sands, New Mexico. The Bilateration Ranging Transponder (BRT) System (BRTS) supports range and Doppler measurements for each TDRS using standard user tracking services. These measurements are used to generate well-determined ephemerides for the TDRSs. TDRSS provides S-band and Ku-band services through the single access (SA) antennas and S-band services through the S-band multiple access (SMA) phased array. TDRSS is capable of supporting coherent range and two-way Doppler tracking as well as noncoherent one-way return-link and one-way forward-link Doppler tracking of user spacecraft. Accurate one-way return-link tracking, which can use SMA, the most available TDRSS resource, requires a stable oscillator onboard the user spacecraft as the source of frequency. Two-way and one-way return-link tracking measurements are used for ground orbit determination for navigation and precise positioning; one-way forward-link tracking is used for autonomous onboard navigation with achievable accuracies better than those of the Global Positioning System (GPS) Precise Positioning System (PPS). This overview will discuss the various tracking and navigation capabilities of TDRSS, as well as many of the operational and research applications that have been conducted for missions such as Landsat-4, Ocean Topography Experiment (TOPEX)/Poseidon (T/P), Cosmic Background Explorer (COBE), and Extreme Ultraviolet Explorer (EUVE).
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    10
    References
    39
    Citations
    NaN
    KQI
    []