High electrostrictive strain in lead-free relaxors near the morphotropic phase boundary

2019 
Abstract Thanks to its small hysteresis, large electrostrictive strain in relaxor ferroelectrics is superior than piezoelectric strain for applications in precision microactuators. Although relaxor ferroelectrics exhibit the largest electrostrictive strain in ceramics, the magnitude of the strain is limited to ∼0.20% at room temperature due to the large amount of non-ferroelectric defects existing in relaxors. In this work, we develop a relaxor with a morphotropic phase boundary (MPB) by doping a rhombohedral (R3m) ferroelectric BaZr0.2Ti0.8O3 into a tetragonal (P4mm) ferroelectric 0.89Bi0.5Na0.5TiO3-0.11BaTiO3. A high electrostrictive strain of 0.27% is achieved at room temperature in the relaxor sample. Experimental results illustrate that the composition is near the MPB and exhibits the existence of nanodomains, favoring the achievement of high electrostrictive strain. Moreover, phase field simulations show that the high electrostrictive strain obtained at this composition originates from the low defect fields needed to induce relaxor as a result of small polarization anisotropy at the phase boundary as compared to conventional relaxors away from phase boundaries. Our work provides a new design strategy for the next generation of high-performance ferroelectric relaxors.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    46
    References
    26
    Citations
    NaN
    KQI
    []