Mitochondrial bioenergetics boost macrophages activation promoting liver regeneration in metabolically compromised animals.

2021 
BACKGROUND AND AIMS Hepatic ischemia-reperfusion injury (IRI) is the leading cause of early post-transplantation organ failure, as mitochondrial respiration and ATP production are affected. Shortage of donors has extended liver donor criteria, including aged or steatotic livers, which are more susceptible to IRI. Given the lack of an effective treatment and the extensive transplantation waitlist, we aimed at characterizing the effects of an accelerated mitochondrial activity by silencing Methylation-controlled J protein (MCJ) in three pre-clinical models of IRI and liver regeneration, focusing on metabolically compromised animal models. APPROACH AND RESULTS Wt, MCJ KO and Mcj silenced Wt mice were subjected to 70% Partial hepatectomy (Phx), prolonged IRI and 70% Phx with IRI. Old and mice with metabolic syndrome were also subjected to these procedures. Expression of MCJ, an endogenous negative regulator of mitochondrial respiration, increases in pre-clinical models of Phx with or without vascular occlusion, and in donors' livers. Mice lacking MCJ initiate liver regeneration 12h faster than WT, show reduced ischemic injury and increased survival. MCJ knockdown enables a mitochondrial adaptation that restores the bioenergetic supply for enhanced regeneration and prevents cell death after IRI. Mechanistically, increased ATP secretion facilitates the early activation of kupffer cells and production of TNF, IL-6 and HB-EGF accelerating the priming phase and the progression through G1/S transition during liver regeneration. Therapeutic silencing of MCJ in 15-month-old mice and in mice fed with a high fat-high fructose diet for 12 weeks improves mitochondrial respiration, reduces steatosis and overcomes regenerative limitations. CONCLUSIONS Boosting mitochondrial activity by silencing MCJ could pave the way for a novel protective approach after major liver resection or IRI, specially in metabolically compromised, IRI susceptible organs.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    0
    Citations
    NaN
    KQI
    []