Endogenous esterases of Clostridium thermocellum are identified and disrupted for enhanced isobutyl acetate production from cellulose

2019 
Medium chain esters are potential drop-in biofuels and versatile chemicals. Currently, these esters are largely produced by the conventional chemical process that uses harsh operating conditions and requires high energy input. Alternatively, the microbial conversion route has recently emerged as a promising platform for sustainable and renewable ester production. The ester biosynthesis pathways can utilize either esterases/lipases or alcohol acyltransferase (AAT), but the AAT-dependent pathway is more thermodynamically favorable in aqueous fermentation environment. Even though cellulolytic thermophiles such as Clostridium thermocellum harboring the engineered AAT-dependent pathway can directly convert lignocellulosic biomass into esters, the production is currently not efficient and requires optimization. One potential bottleneck is the ester degradation caused by the endogenous carbohydrate esterases (CEs) whose functional roles are poorly understood. In this study, we developed a simple, high-throughput colorimetric assay to screen the endogenous esterases of C. thermocellum responsible for ester hydrolysis. We identified, characterized, and disrupted two critical endogenous esterases that significantly contributes to isobutyl acetate degradation in C. thermocellum. We demonstrated that not only did the engineered esterase-deficient strain alleviate ester hydrolysis but also helped improve isobutyl acetate production while not affecting its robust metabolism for effective cellulose assimilation.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    47
    References
    2
    Citations
    NaN
    KQI
    []