N-type doping of low-pressure chemical vapor deposition grown β-Ga2O3 thin films using solid-source germanium

2021 
We report on the growth and characterization of Ge-doped β-Ga2O3 thin films using a solid germanium source. β-Ga2O3 thin films were grown using a low-pressure chemical vapor deposition reactor with either an oxygen or a gallium delivery tube. Films were grown on 6° offcut sapphire and (010) β-Ga2O3 substrates with growth rates between 0.5 and 22 μm/h. By controlling the germanium vapor pressure, a wide range of Hall carrier concentrations between 1017 and 1019 cm−3 were achieved. Low-temperature Hall data revealed a difference in donor incorporation depending on the reactor configuration. At low growth rates, germanium occupied a single donor energy level between 8 and 10 meV. At higher growth rates, germanium doping predominantly results in a deeper donor energy level at 85 meV. This work shows the effect of reactor design and growth regime on the kinetics of impurity incorporation. Studying donor incorporation in β-Ga2O3 is important for the design of high-power electronic devices.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    0
    References
    3
    Citations
    NaN
    KQI
    []