Room-Temperature Solution-Processed n-Doped Zirconium Oxide Cathode Buffer Layer for Efficient and Stable Organic and Hybrid Perovskite Solar Cells

2016 
In this study, we present a simple and effective method to improve the performance and stability of organic and hybrid perovskite solar cells by the incorporation of solution-processed cetyltrimethylammonium bromide (CTAB)-doped zirconium oxide (ZrOx) as cathode buffer layer (CBL). This novel n-doped ZrOx CBL possesses several remarkable features, including ease of fabrication without the need for thermal annealing or any other post-treatment, reasonable electrical conductivity (2.9 × 10–5 S cm–1), good ambient stability, effective work function modulation of Ag electrode, relative weak thickness-dependent performance property, and wide applicability in a variety of active layers. Compared with ZrOx CBL without CTAB dopant, CTAB-doped ZrOx can significantly improve the power conversion efficiency (PCE) from 0.57% to 2.48% in organic solar cells based on diketopyrrolopyrrole-thiophene-bezothiadazole low-bandgap polymer (PDPP-TBT):[6,6]-phenyl-C71-butyric acid methyl ester (PC71BM) blend. With this n-doped ...
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    49
    References
    42
    Citations
    NaN
    KQI
    []