First measurement using a nuclear emulsion detector of the $\nu_{\mu}$ charged-current cross section on iron around the 1$\,$GeV energy region

2020 
We report the flux-averaged $\nu_{\mu}$ charged-current cross sections on iron using an emulsion-based detector exposed to the T2K neutrino beam in the J-PARC neutrino facility. The data samples correspond to 4.0$\times$10$^{19}$ protons on target, and the neutrino mean energy is 1.49$\,$GeV. The cross section was measured to be $\sigma^{\mathrm{Fe}}_{\mathrm{CC}} = (1.28 \pm 0.11({\mathrm{stat.}})^{+0.12}_{-0.11}({\mathrm{syst.}})) \times 10^{-38} \, {\mathrm{cm}}^{2}/{\mathrm{nucleon}}$. The cross section in a limited kinematic phase space of induced muons, $\theta_{\mu} 400 \, {\rm MeV}/c$, on iron was $\sigma^{\mathrm{Fe}}_{\mathrm{CC \hspace{1mm} phase \hspace{0.5mm} space}} = (0.84 \pm 0.07({\mathrm{stat.}})^{+0.07}_{-0.06}({\mathrm{syst.}})) \times 10^{-38} \, {\mathrm{cm}}^{2}/{\mathrm{nucleon}}$. These results are consistent with previous values obtained via different techniques using the same beamline, and it is well reproduced by current neutrino interaction models. These results represent a significant advance for precise measurements of the neutrino-nucleus interactions around the 1$\,$GeV energy region.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    58
    References
    0
    Citations
    NaN
    KQI
    []