A computational model of a network of initial lymphatics and pre-collectors with permeable interstitium

2019 
Initial lymphatic vessels are made up of overlapped endothelial cells that act as unidirectional valves enabling one-way drainage of tissue fluid into the lumen of the initial lymphatics when there is a favourable pressure gradient. Initial lymphatics subsequently drain this fluid into the collecting lymphatics. This paper describes a computational model for a network of passive rat mesenteric lymphatic vessels with sparse secondary valves. The network was simulated with the secondary valves both operational and non-operational. The effects on the cycle-mean outflow-rate from the network of both inflammation and the resistance of the surrounding interstitium were considered. The cycle-mean outflow-rate is sensitive to vessel stiffness. If the influence of primary-valve resistance is reduced relative to that of interstitial resistance and intravascular resistance, there is no absolute advantage of extrinsic pumping, since maximum outflow-rate occurs when vessels are rigid. However, there is relative advantage, in that the outflow-rate at intermediate stiffness is higher with the secondary valves functioning than when they are deactivated. If primary-valve resistance dominates, then extrinsic pumping of non-rigid vessels provides absolute advantage. The nonlinear relation between pressure drop and flow-rate of the endothelial primary valves, combined with downstream compliance and pulsatile external pressure, constitutes a separate mechanism of pumping. By enabling the consideration of interactions between multiple phenomena (primary valves, secondary valves, a real network geometry with multiple branches, deformable vessel walls, interstitial resistance and external pressures), the model offers a perspective for delineating physiological phenomena that have not yet been fully linked to the biomechanics of fluid flow through initial lymphatic networks.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    37
    References
    4
    Citations
    NaN
    KQI
    []