Phase control of coherent acoustic phonons in gold bipyramids for optical memory and manipulating plasmon–exciton coupling

2020 
Recent efforts have targeted manipulation of nanomaterial vibrational modes in applications such as chemical/mass sensing, optical switching, and phonon-driven photochemistry. While impulsive photoexcitation can generate coherent phonons, multiple excitation pulses offer the prospect of control and manipulation of coherent phonon modes for functions of optical memory and logic. Here, we use such an approach to inject an arbitrary coherent phonon phase into a colloidal ensemble of highly monodisperse gold bipyramids. We then demonstrate that this technique can be applied to a system that exhibits plasmon–exciton coupling to further manipulate the hybridization of the system. This ability to manipulate acoustic phonons and hybridization can enable optical logic applications of acoustic phonons in addition to optical memory.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    35
    References
    0
    Citations
    NaN
    KQI
    []