Abundant non-A residues in the poly(A) tail orchestrate the mouse oocyte-to-embryo transition

2021 
Non-A (U, G, and C) residues can be added to the 5-end, internal, and 3-end positions of poly(A) tails of RNA transcripts, and some of these have been shown to regulate mRNA stability. The mammalian oocyte-to-embryo transition (OET) relies on post-transcriptional regulation of maternal RNA, because transcription is silent during this process until the point of zygotic genome activation (ZGA). Although the regulation of mRNA translation by poly(A) tail length plays an important role in the mammalian OET, the dynamics and functions of non-A residues in poly(A) tails are completely unknown. In this study, we profiled the genome-wide presence, abundance, and roles of non-A residues during the OET in mice using PAIso-seq1 and PAIso-seq, two complementary methods of poly(A) tail analysis. We found that non-A residues are highly dynamic in maternal mRNA, following a general pattern of beginning to increase at the MII stage, becoming highly abundant after fertilization with U residues in about half of poly(A) tails in 1-cell embryos, and declining in 2-cell embryos. We revealed that Btg4-mediated global maternal mRNA deadenylation created the substrates for U residue addition by Tut4/7 at their 3-ends and further re-polyadenylation. In addition, G residues can be added by Tent4a/b. Finally, we demonstrate that G residues stabilize the modified mRNA, while the U residues mark maternal RNA for faster degradation in 2-cell mouse embryos. Taken together, these findings demonstrate that non-A residues are abundant and re-sculpt the maternal transcriptome to initiate zygotic development, which reveals the functional importance of the post-transcriptional regulation mediated by non-A residues in mRNA poly(A) tails.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    45
    References
    10
    Citations
    NaN
    KQI
    []