Pseudogap phase of cuprate superconductors confined by Fermi surface topology.

2017 
The properties of cuprate high-temperature superconductors are largely shaped by competing phases whose nature is often a mystery. Chiefly among them is the pseudogap phase, which sets in at a doping p* that is material-dependent. What determines p* is currently an open question. Here we show that the pseudogap cannot open on an electron-like Fermi surface, and can only exist below the doping p FS at which the large Fermi surface goes from hole-like to electron-like, so that p* ≤ p FS. We derive this result from high-magnetic-field transport measurements in La1.6−x Nd0.4Sr x CuO4 under pressure, which reveal a large and unexpected shift of p* with pressure, driven by a corresponding shift in p FS. This necessary condition for pseudogap formation, imposed by details of the Fermi surface, is a strong constraint for theories of the pseudogap phase. Our finding that p* can be tuned with a modest pressure opens a new route for experimental studies of the pseudogap. High-temperature superconductors exhibit pseudogap behaviour that remains of unknown origin, despite many years of intensive study. Here the authors study the onset of the pseudogap under pressure, providing evidence that it requires a hole-like Fermi surface and constraining future theoretical developments.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    53
    Citations
    NaN
    KQI
    []