Optical parametric oscillation in one-dimensional microcavities

2013 
We present a comprehensive investigation of optical parametric oscillation in resonantly excited one-dimensional semiconductor microcavities with embedded quantum wells. Such solid-state structures feature a fine control over light-matter coupling and produce a photonic/polaritonic mode fan that is exploited for the efficient emission of parametric beams. We implement an energy-degenerate optical parametric oscillator with balanced signal and idler intensities via a polarization-inverting mechanism. In this paper, we (i) precisely review the multimode photonic/polaritonic structure of individual emitters, (ii) provide a thorough comparison between experiment and theory, focusing on the power and the threshold dependence on the exciton-photon detuning, (iii) discuss the influence of inhomogeneous broadening of the excitonic transition and finite size, and (iv) find that a large exciton-photon detuning is a key parameter to reach a high output power and a high conversion efficiency. Our study highlights the predictive character of the polariton interaction theory and the flexibility of one-dimensional semiconductor microcavities as a platform to study parametric phenomena.
    • Correction
    • Source
    • Cite
    • Save
    • Machine Reading By IdeaReader
    40
    References
    8
    Citations
    NaN
    KQI
    []